(2) **Today**

Next Class (3)

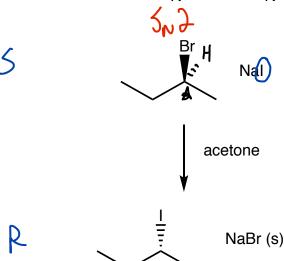
Chap 11: Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

Sections 11.1 - 11.6: Substitution Reactions

Sections 11.1 - 11.6: Substitution Reactions

Sections 10.5, 17.6: Alcohols in Nucleophilic Substitution Reactions

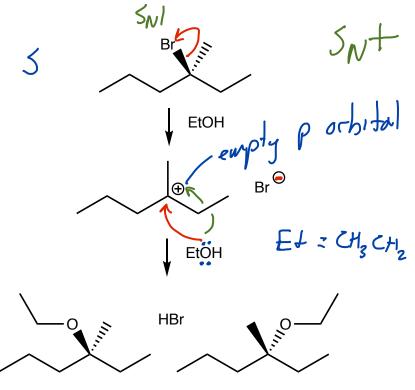
(4) Second Class from Today

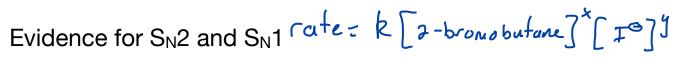

Third Class from Today (5)

Sections 10.5, 17.6: Alcohols in Nucleophilic Substitution Reactions

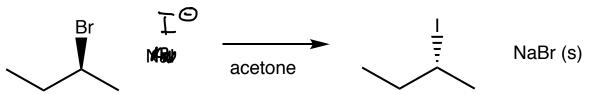
Sections 11:7 - 11:11: Elimination Reactions

Sections 11:7 - 11:11: Elimination Reactions


Evidence for S_N2 and S_N1


The I (nucleophile)
cannot come in from
the side the Br (leaving group)
15 on.

I (nucleophile) zomes in from behind, and the sturochumistry is inverted ... only I sturoisomer produced.


Section 11.2 and 11.4

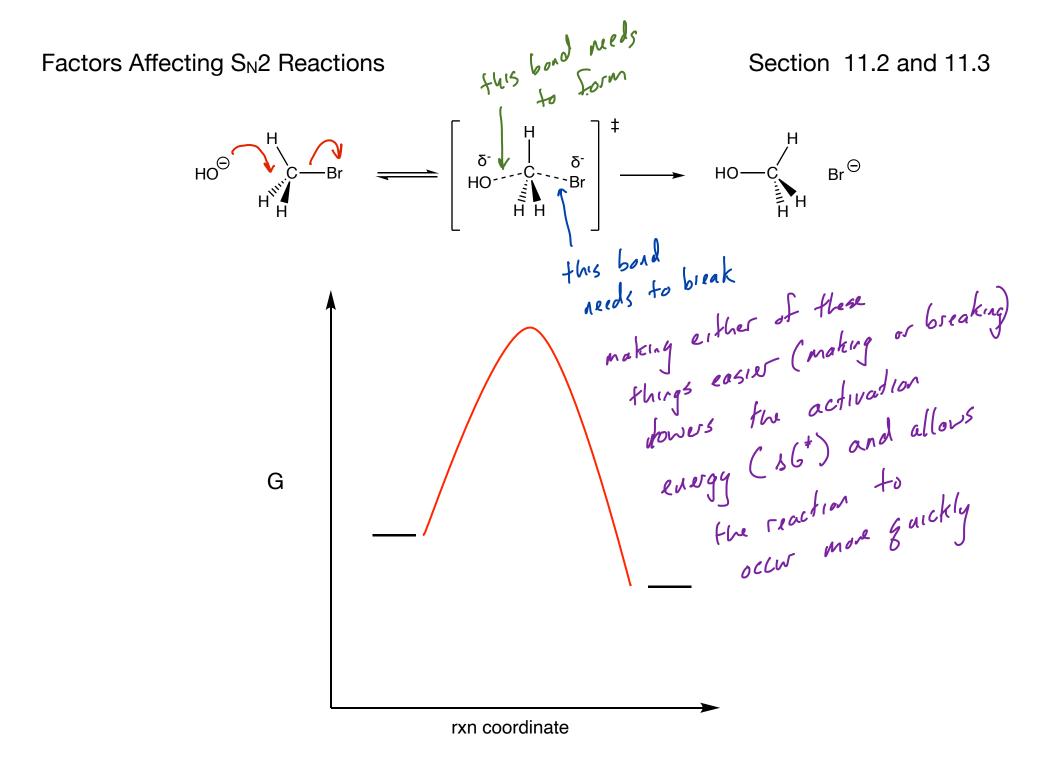
Since a 2+ forms, the nucleophile ran add to both sides, so a streoisumes Form

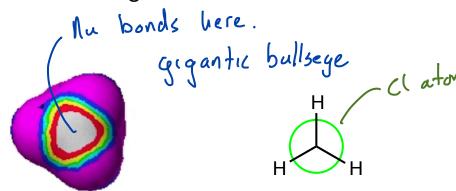
Section 11.2 and 11.4

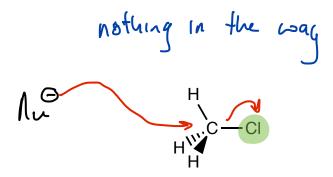
predicted rate law rate = k [CH3CH2CH2CH2Br][I-]

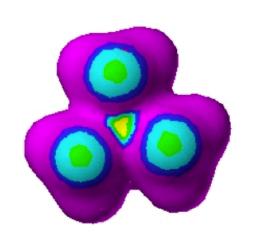
Fate is positive for the production of product

Uhin 5p2 reactions occur the rate depends on / is proportional to


the zoncentration of the substrate and the nucleophile




predicted rate law


rate = *k [CH₃CH₂CH₂C(CH₃)BrCH₃]

When Sul seactions occur, the rate does not depend on the concentration of the nucleophile

access to the backside of the x-2 is in sur great sur fine SNR meh LG CI LG CI LG CI Methyl x-L I' x-2 2° x-2 3°

Nope

Cl

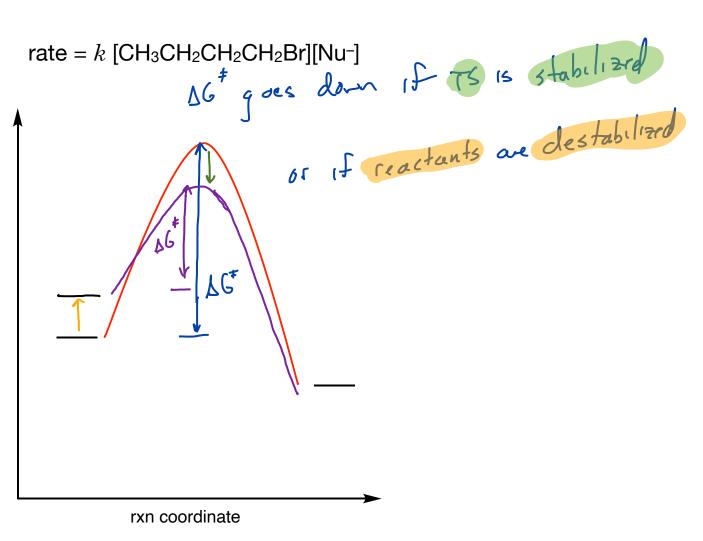
3° ~- C

Factors Affecting S_N2 Reactions: Nucleophile Quality

Section 11.2 and 11.3

More reactive

nucleophiles will


raise the energy of

the reactants and

make the gap G

between the TS

+ reactants smaller

Factors affecting S_N2: Nucleophile Quality - MCTEAR SIZE of atom Section 11.3

Nu: + CH₃Br → CH₃Nu + Br

Nucleophile		Product		Deleties water of nearties.	
Formula	Name	Formula	Name	Relative rate of reaction	
H ₂ 0.	Water	CH ₃ OH ₂ ⁺	Methylhydronium ion	1	
CH ₃ CO ₂	Acetate	CH ₃ CO ₂ CH ₃	Methyl acetate	500	ase than
NH ₃	Ammonia	CH ₃ NH ₃ ⁺	Methylammonium ion	1,000 higher to	ir holicale
Cl ⁻	Chloride	CH ₃ Cl	Chloromethane	1,000 hight !	120
HÖ:	Hydroxide	CH ₃ OH	Methanol	10,000 - strong 60	ise F
CH ₃ O ⁻	Methoxide	CH ₃ OCH ₃	Dimethyl ether	10,000 - strong be high in 25,000 very re	ractive
I ⁻	Iodide	CH ₃ I	Iodomethane	100,000 _ large	pola (zab
⁻ CN	Cyanide	CH ₃ CN	Acetonitrile	100,000 — large 125,000 — lons/a 125,000 — are	toms
HS ⁻	Hydrosulfide	CH ₃ SH	Methanethiol	125,000 - are	good

Ceneral trend ... stronger base = stronger nucleophile
Organic Chemistry, a Tenth Edition. McMurry, OpenStax. But weak boxes can be good nucleophiles

HI, HBr, HCI + 400 -> H300 + I, B, ZI