Today

Infrared Spectroscopy

Second Class from Today

Chapter 21.4 – 21.7

Chapter 21.1 – 21.3

Third Class from Today

Chapter 21.8 – 21.9 , Chemistry Matters

Monday office hours rescheduled to 1:10 to 2:10 from now on.

March 24

Please rework, on a separate piece of paper, test 1 and hand in on Wednesday, March 19.

Rework means for each question that your did not receive full credit provide a more complete answer.

I do not need your test back, please just hand in the reworked answers.

Next Class

Fine Tuning Identification of Carbonyl Peaks

 $\overline{v} = \frac{1}{2\pi c} \left[\frac{f(m_1 + m_2)}{m_1 m_2} \right]$ when these stretch OH the ribration sealing changes the dipule of the R R R R R R single bond short strong longer weaker double bond doube bond molecule ... higher wave number Interne ... easy to lower wave number ree peaks ~ 1050 cm-1 1715 cm-1 weater bond strang band large F higher freguency smaller f lower Frequency Section

Section

wavenumber (cm-1)

IR Interpretation Guide

Additional information for analyzing C=O stretches:

Additional information for analyzing C-H stretches:

If sp³ C–H stretch at < 3000 cm^{-1} then look around 1400, sp³ C–H bend is at 1430 and if peak at 1380 also present then sp³ C–H is CH₃.

If sp^2 C–H stretch at > 3000 cm⁻¹, and not benzene gives rise to bending vibrations from 1000–600.

Some abbreviations for vibrational modes

- v stretching
- $\boldsymbol{\delta}$ in-plane bending or deformation
- ρ_w wagging
- ρ_r rocking
- $ho_{
 m t}$ twisting
- π out-of-plane bending

Abbreviations used to further characterize vibration modes

- a antisymmetric
- s symmetric
- d degenerate

For example, references to $v_s(C-Cl)$ are references to the symmetrical stretching mode of a C to Cl bond.

Strategies for using IR spectroscopy to identify functional groups.

Examine formula and look for possible functional groups in IR spectrum use 2n+2 rule to rule π bonds in or out Closely examine positions of C–H peaks for additional information sp² vs sp³ C atoms presence or absence of CH₃ groups Position of C=O peaks amide vs ketone vs aldehyde vs ester vs carboxylic acid Rule benzene rings in or out using degree of unsaturation (2n+2 rule)

Examine IR spectrum for obvious functional groups

Double check for consistency: for example do not claim a C=O peak is an ester if the molecule has only 1 O atom do not claim nitrile if there are no N atoms look for confirmation in assignments: aldehyde, find both C=O and C(O)-H peaks ester C=O and C(O)-O-R peaks