6.1 How Enzymes Work

6.2 Kinetics

(19) Second Class from Today

6.3 Enzyme Kinetics

Next Class (18)

6.2 Kinetics

6.3 Enzyme Kinetics

Third Class from Today (20) Chap 7: Carbohydrates

Monday office hours rescheduled to 1:10 to 2:10 from now on.

Please rework* on a separate piece of paper test 1 and hand in on Friday March 21

*On a piece of paper separate from your test, for each question that your did not receive full credit provide a more complete answer.

I do not need your test back, please just hand in the reworked answers.

Acid-Base Catalysis - using acid and bases to increase electrophilicity or nucleophilicity using acids and bases to decrease the gap between reactants and transition states

Metals Cations and Electrostatic Effects - Metals cations can stabilize developing negative charges $F_e \stackrel{z_+}{\longrightarrow} C_o \stackrel{z_+}{\longrightarrow} Z_A \stackrel{z_+}{\longrightarrow}$

Metals Cations and their ability to to Polarize Bonds - Metal cations can polarize bond and, for example, make water more acidic

Covalent Catalysis - catalysis can covalently bond to the substrate, speed up one step and then be released

Kinetics

Rate Laws, the mathematical expressions that describe the rate of a reaction, have to be determined experimentally.

Rate laws help us understand the mechanism of a reaction

The are determined by measuring the

SNI US SNZ diffuent rate Law diffuent mechanisms

Initial Rates, the rate at the beginning of the reaction, v_0 , is measured at various concentrations to determine the "order" of the reaction

Integrated Rate laws

Concentrations are measured over time, and compared to a rate law that has been integrated

Kinetics: Rate This is a mechanism, a one step mechanism 6.2.1
where A is converted P 6.2.1
$$A \xrightarrow{k_1} P$$

rate is the change in ... concentration of the reactants or product with respect to time we like to express rates as a positive number As time goes by [A] is decreasing, whereas [P] is increasing rate = -d[A] = d(P)dt15 an instantaneous rate

Since the conc. of A is decreasing, $[A]_t - [A]_0$ is < 0 so a "-" is added to make the rate positive o "naught" for starting time Kinetics: First Order Rate Laws

If it's a 1-step mechanism with 6.2.1
I reactant the rate depends

$$A \longrightarrow P$$
 just on the carc. of that
reactant
rate = $-\frac{d[A]}{dt} = k_1[A]^{\prime}$ this I is why the
reaction is "first order"
this is the rate constant
must be determined
experimentally

reactions that are first order w/r/t a given reactant have rates that increase proportionally with that reactant

https://bio.libretexts.org/@api/deki/files/55167/firstorderRxKin.svg?revision=1

6.2.1

Kinetics: Second Order Rate Laws

doubling conc. If A doubles the doubling chance of a successful collision chance of a successful collision thus doubles the rate... k_1 $A+B \longrightarrow P$ is order $\omega/r/t$ A 6.2.1 rate = k, [A][B7 this reaction is 2nd irde overall... order w/r/t [A] is 1 w/r/t [B] is 1 |+| = 2pseudo first order Increase conc of B so much that [B] is essentially constant $ote = k_1 [A] [B]^*$ rate = k,[B]* [A] rote = k,* [A]

Kinetics: Sec

https://bio.libretexts.org/@api/deki/files/55168/2ndorderRxKin.svg?revision=1