1. One cobalt complex with the empirical formula CoN₄H₁₂Cl₃ has a molecular formula of cis-[Co(NH₃)₄Cl₂]Cl.

1. _____

a. (6 pts.) How many Cl atoms/ions are in the inner coordination sphere?

b. (6 pts) Draw a wedge and dash representation of the compound. The transition metal complex has an octahedral geometry. Draw only the complex ion and remember to indicate the charge of the complex ion.

- 6.
- 2. (12 pts.) Determine the oxidation state/charge of the metal at the center of the following complexes. Names and charges for common ligands are listed on the last page.

7.

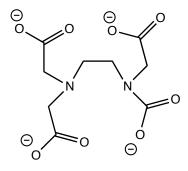
a. $K_3[Fe(CN)_6]$

b. Cr(NH₃)₃Cl₃

- 8.

10. _____

3. (12 pts.) Provide molecular formulas for the following compounds.

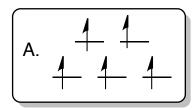

11.

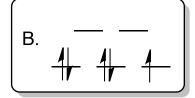
- a. sodium hexachloroplatinate(IV)
- b. pentaaminebromoiron(III) nitrate
- 12. _____
- 4. (12 pts.) Determine whether the following ligands are monodentate, bidenate, tridentate, tetradentate, etc. b.

c.

a.

5. (10 pts.) Ethylenediaminetetraacetate (EDTA), the structure drawn below, is used to treat heavy metal poisoning because it is exceptionally good at binding with metals thus preventing those metals from interfering with biological processes. Briefly explain why EDTA so strongly binds to metals.




6. (10 pts.) According to the Jahn-Teller Theorem the low-spin d⁵ electron configuration on the left is unstable, and the molecule will distort to remove the uneven filling of the t_{2g} set of degenerate orbitals. Does the electron configuration on the right result from an elongation or a compression along the z axis. Briefly explain your choice.

before distortion

after distortion

7. (10 pts.) Magnetic susceptibility can be used to determine the arrangement of the electrons in a metal's d orbitals. Which of the following arrangements of electrons would have the highest magnetic susceptibility. Briefly explain your choice.

8. (6 pts.) Carbonyl ligands are σ -donor, π -acceptor ligands. As such they the tend not to bond to a metal center trans to each other. Thus, in $[Re(CO)_3(H_2O)_3]^+$ the CO ligands and the H_2O ligands adopt a facial geometry. Draw a wedge and dash representation of the octahedral complex fac- $[Re(CO)_3(H_2O)_3]^+$.

9. (10 pts.) Sketch the bonding interaction between a π^* orbital of carbon monoxide and a filled d orbital on a metal.

10. To the right is a rate law that is consistent with a dissociative mechanism that forms ML_5Y from a reaction of ML_5X and Y.

$$\frac{\mathsf{d}[\mathsf{ML}_5\mathsf{Y}]}{\mathsf{dt}} = \frac{k_1k_2[\mathsf{ML}_5\mathsf{X}][\mathsf{Y}]}{k_{-1}[\mathsf{X}] + k_2[\mathsf{Y}]}$$

a. (6 pts.) Will the initial rate of the reaction depend on the the concentration of the incoming ligand [Y]? Explain briefly.

- b. (6 pts.) Will adding X to the reaction increase or decrease the rate of product formation?
- 11. (12 pts.) Three mechanisms for substitution reactions are drawn below. Label the mechanisms as "associative", "dissociative", or "interchange".

"associative", "dissociative", or "interchange".

$$ML_5X + Y \xrightarrow{k_1} YML_5X$$

$$YML_5X \xrightarrow{k_2} ML_5Y + X$$

$$ML_5X + Y \longrightarrow [Y ... ML_5 ... X]^{\ddagger} \longrightarrow ML_5Y + X$$

$$ML_5X + Y \longrightarrow ML_5Y + X$$

$$ML_5X + Y \longrightarrow ML_5Y + X$$

O_h	Е	8 C ₃	6 C ₂	6 C ₄	3 C ₂ (C ₄ ²)	i	$6 \mathrm{S}_4$	8 S ₆	3 o _h	$6 \sigma_{ m d}$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		$\begin{array}{c} x^2 + y^2 + \\ z^2 \end{array}$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
$ m E_{g}$	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, yz, xz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

formula and charge	compound/ion name	ligand name
CO	carbon monoxide	carbonyl
CN-	cyanide	cyano
CH ₃ CN	acetonitrile	acetonitrile
NH ₃	ammonia	ammine
H ₂ NCH ₂ CH ₂ NH ₂	ethylene diamine	ethylene diamine
NCS-	thiocyanate	thiocyanato
$\mathrm{H}_{2}\mathrm{O}$	water	aqua
F-	fluoride	fluoro
CH ₃ CO ₂ -	acetate	acetato
OH-	hydroxide	hydroxo
Cl-	chloride	chloro
Br-	bromide	bromo
I-	iodide	iodo

2	He	4.0026	10	Se	20.1797	18	A	39.948	36	ネ		54	Xe	86	R	118	
			6	ட	18.998	17	ರ		35	Ŗ	79.904	53	_	85	At		
			<u>&</u>	0	15.999	16	ഗ	32.065	34	Se		52	<u>e</u>	84	Ъо	116	
			7	Z	14.007	15	<u>α</u>	•••	33	As		51	Sp	83	<u>.</u>		
			9	ပ	12.011	14	S		32	Ge		20	Sn	82	Pb	114	
			ي	m	10.811	13	4	26.981	31	Ga		49		81	F		
									30	Zn		48	р С	80	Hg	112	
									59	CC		47	Ag	62	Au	11	
									28	Z		46	Pd	78	풉	110	
									27	ද		45	R	22	<u>_</u>	100	
									56	Бe		44	Tc Ru	92	Os	80 <u>1</u>	<u>ი</u>
									25	M		43	ည	75	Re	107 D	
									24	ပ်		42	Mo	74	>	106 7	<u>و</u>
									23	>		41	Q	73	<u>E</u>	105 7	3
									22	F		40	Ž	72	ቿ	104 D	
		ı							21	Sc		39	>	22	La	68	ر لا
_			4	Be	9.012	12	M	24.305	20	Ca		38	S	26	Ва	88 0	ב
_	I	1.0079	ო	=	6.941	=	Na	22.989	19	¥		37	Cs	22	R Q	87 П	- L

Lu	¹⁰³
4b	99 100 101 102 103 ES Fm Md No Lr
E E	101 Md
88 E	100 H
Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	<u>в</u>
e D	Č,
85 T	94 95 96 97 98 Pu Am Cm Bk Cf
² D	C C C
Eu Eu	Am
Sm Sm	Pu
PB	ва В
P) D
₅₉	₉₁
Ce Ce	06 Th