- 1. (12 pts.) Describe what each of the following symmetry operations are.
 - a. a σ_h operation

1. _____

b. a C₂ operation

3. _____

c. an S₄ operation

4. _____

2. (16 pts.) Determine the point group for each of the following molecules. Wedge and dashed 3D representations have been provided.

a. O S: CI

b. F—B

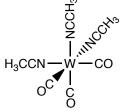
 $\begin{bmatrix} CI \\ I \\ Br - Pt - CI \\ I \\ CI \end{bmatrix}^{2-}$

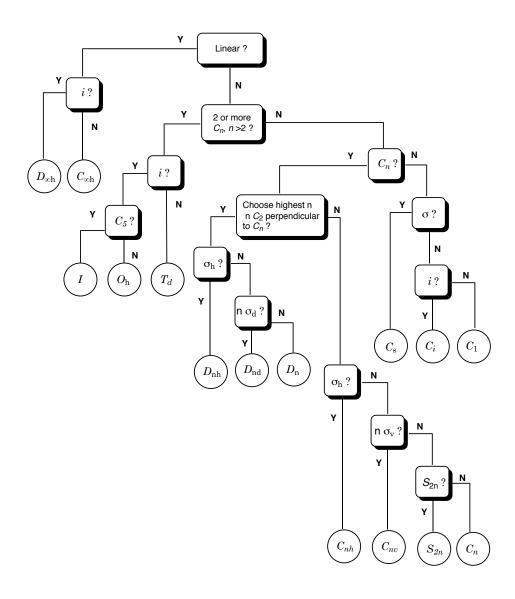
3. (12 pts.) Perform the indicated operations on the following molecules, and draw a 3D representation, using wedge and dash notation where appropriate, for the resulting view.

a. Perform a reflection through the yz plane that contains the Mn atom

b. Perform an inversion through the C atom

c. Perform a C₃ on the axis that contains the P to O bond.




4. (10 pts.) Determine the irreducible representation for the reducible representation listed at the bottom of the following character table.

T_{d}	E	8 C ₃	$3 C_2$	$6 S_4$	$6 \sigma_{ m d}$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$2z^2 - x^2 - y^2, x^2 - y^2$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)
Γ	8	2	0	2	-2		

- $5.~(10~{\rm pt.})$ Determine the number of CO stretching vibrations that would be visible in the IR spectrum of trisacetonitrilecarbonyltungsten.
- a. Determine the point group for the molecule.
- b. Determine the reducible representation for the CO stretching vibrations.
- c. Determine the irreducible representations for the CO stretching vibrations.
- d. Determine the number of CO stretching bands that you would expect to see in the IR spectrum of the molecule.

Point Group Assignment Tree

D_{3h}	E	$2C_3$	$3C_2$	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A ₁ '	1	1	1	1	1	1		$x^2 + y^2, z^2$
A2'	1	1	-1	1	1	-1	R_{z}	
E'	2	-1	0	2	-1	0	(x,y)	$(x^2 - y^2, xy)$
A ₁ ''	1	1	1	-1	-1	-1		
A ₂ ''	1	1	-1	-1	-1	1	Z	
Е"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yx)

$\mathrm{C}_{3\mathrm{h}}$	Е	2 C ₃	σh	$2 S_3$		
A'	1	1	1	1	R_{z}	$x^2 + y^2, z^2$
A''	1	1	-1	-1	z	
Ε'	2	-1	2	-1	(x,y)	(x^2-y^2,xy)
E''	2	-1	-2	1	(R_x, R_y)	(xz, yz)

$\mathrm{C}_{3\mathrm{v}}$	E	$2~\mathrm{C}_3$	$3 \sigma_{v}$		
A_1	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_{z}	
Е	2	-1	0	$(x, y), (R_x, R_y)$	$(x^2 - y^2, xy), (xz, yz)$

O_h	Е	8 C ₃	$6~\mathrm{C}_2$	6 C ₄	$3 C_2$	i	$6 S_4$	$8 S_6$	$3 \sigma_h$	$6 \sigma_{ m d}$		
					$(C_4{}^2)$							
A_{1g}	1	1	1	1	1	1	1	1	1	1		$\begin{array}{c} \mathbf{x}^2 + \mathbf{y}^2 + \\ \mathbf{z}^2 \end{array}$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E_{g}	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
												$y^2, x^2 - y^2$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, yz, xz)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		
T _{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		