(16) Today Next Class (17)

Section 3.2: Alkanes and Isomers

Section 3.5 - 3.7: Properties and Conformations of Alkanes

Section 3.4: Nomenclature

Chap 4 Cycloalkanes
Section 3.5 - 3.7: Properties and
Conformations of Alkanes

Section 4.1 Naming Cycloalkanes and
Halogen Substituents

(18) Second Class from Today

Sections 4.3 – 4.8 Stability of Cycloalkanes

and Conformations of Cyclohexanes

Chirality and Determining the Configuration
of Chiral Centers

Sections 5.1 – 5.5
Chirality and Determining the Configuration of Sections 5.6 – 5.12
Chiral Centers Diastereomers, N,P, and S, and Prochirality

Office Hours moved from 12:20 to 1:20 to 3:00 to 4:00 for the foreseeable future

Rework Test 1 and hand in on Wednesday, October 15. Rework means that you should, on a separate piece of paper, write a more complete answer for any question that you did not received full credit for. I do NOT need the test back.

Third Class from Today (19)

Nomenclature of Alkanes: Original Scheme based names on number of C atoms present but nonsystematic nomenclature becomes problematic quickly....

methane	CH₄	1 isomer
ethane	C ₂ H ₆	1 isomer
propane	C ₃ H ₈	1 isomer
butane	C ₄ H ₁₀	2 isomers
pentane	C ₅ H ₁₂	3 isomers
hexane	C ₆ H ₁₄	5 isomers
heptane	C ₇ H ₁₆	
octane	C ₈ H ₁₈	
nonane	C ₉ H ₂₀	
decane	C ₁₀ H ₂₂	
undecane	C ₁₁ H ₂₄	
dodecane	C ₁₂ H ₂₆	

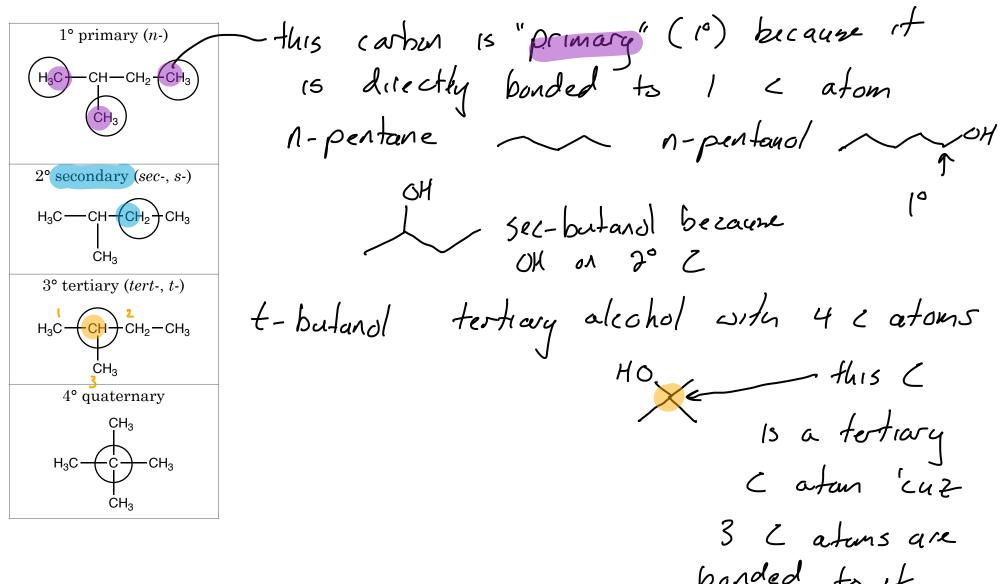
butane

CH3 CH3 CH3 CH(CH3)3

pentane

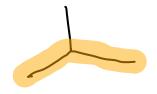
Isopentane

Neopentane


But before getting into the systematic nomenclature of Substituted Alkanes: non-IUPAC names based on total number of C atoms present

the "iso" group		R	OH
isobutane	R = CH₃ (4 C's)		
isopentane	R = CH ₂ CH ₃ (5 C's)		
isohexane	R = CH2CH2CH3 (6 C's)		15 oheptare
the "neo" group		R	
neopentane	R = H (5 C's)	Tum.	
neohexane	R = CH ₃ (6 C's)	The state of the s	neo heptane

Each of these molecules could be used as an adjective to describe a group; for example, the top one where the R is not defined we could say that the defined parts are an isopropyl group. It's three carbons (propane) in the shape of the iso group.


But before getting into the systematic nomenclature of Substituted Alkanes: non-IUPAC names based on total number of C atoms present and position of functional group

Degree of Substitution

Nomenclature of Alkanes: IUPAC Names based on the number of C's in the longest continuous chain of C atoms

methane	CH ₄	
ethane	CH₃CH₃	
propane	CH ₃ CH ₂ CH ₃	
butane	CH ₃ CH ₂ CH ₂ CH ₃	
pentane	CH ₃ CH ₂ CH ₂ CH ₃	
hexane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	
heptane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	
octane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	
nonane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	
decane	CH ₃ CH ₂ CH ₃	
undecane	CH ₃ CH ₂ CH ₃	
dodecane	CH ₃ CH ₂	

Nomenclature of Alkanes: IUPAC Names based on the number of C's in the longest continuous chain e CH3 methyl group of C atoms

Determine longest continuous chain.

- This is the parent hydrocarbon

 If compound has two or more chains of the same length, parent hydrocarbon is chain with greatest number of substituents

List the name of substituent(s) before the name of the parent hydrocarbon along with the number of the carbon to which it is attached--Substituents are listed in alphabetical order – neglecting prefixes such as di- tri- tert- etc.

- Find and list all of the substituents
- Names of alkyl substituents are based on the length of the substituent.
- Names for branched substituent such as sec-butyl and tert-butyl are acceptable, but systematic substituent names are preferable.
 - o The numbering system for a branched substituent begins with the carbon attached to the parent hydrocarbon
 - o This number together with the substituent name is placed inside parentheses
- Number the substituents
 - in the direction that gives the lower number for the lowest-numbered substituent. (Lowest possible number for all substituents on the parent chain)
 - o When both directions yield the same lower number for the lowest numbered substituent, select the direction that yields the lower number for the next lowest numbered substituent
 - If same substituent numbers are obtained in either direction, number in the direction giving lowest number to the first (alphabetically) named substituent

Form of name: #-followed by substituent name followed by parent hydrocarbon name

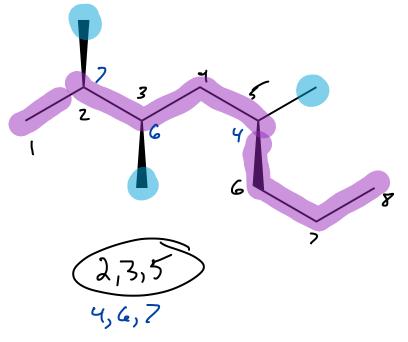
position#-stuff hanging off longest chainlongest chain of C atomsfunctional group ending 2,5 - dinethyloctare

Nomenclature of Alkanes: IUPAC Names based on the number of C's in the longest continuous chain of C atoms

Determine longest continuous chain.

- This is the parent hydrocarbon
- If compound has two or more chains of the same length, parent hydrocarbon is chain with greatest number of substituents

List the name of substituent(s) before the name of the parent hydrocarbon along with the number of the carbon to which it is attached--Substituents are listed in alphabetical order – neglecting prefixes such as di- tri- tert- etc.


- Find and list all of the substituents
- Names of alkyl substituents are based on the length of the substituent.
- Names for branched substituent such as *sec*-butyl and *tert*-butyl are acceptable, but systematic substituent names are preferable.
 - o The numbering system for a branched substituent begins with the carbon attached to the parent hydrocarbon
 - o This number together with the substituent name is placed inside parentheses
- Number the substituents
 - o in the direction that gives the lower number for the lowest-numbered substituent. (Lowest possible number for all substituents on the parent chain)
 - O When both directions yield the same lower number for the lowest numbered substituent, select the direction that yields the lower number for the next lowest numbered substituent
 - o If same substituent numbers are obtained in either direction, number in the direction giving lowest number to the first (alphabetically) named substituent

Form of name: #-followed by substituent name followed by parent hydrocarbon name

position#-stuff hanging off longest chainlongest chain of C atomsfunctional group ending

Nomenclature of Alkanes

position#-stuff hanging off longest chainlongest chain of C atomsfunctional group ending

Nomenclature of Alkanes

position#-stuff hanging off longest chainlongest chain of C atomsfunctional group ending

longest chain:

7

parent alkane name:

heptane

functional group (?) and position:

are /

substituent names:

two methyl groups

ethyl

substituent positions:

2,5,6

ethyl tre for largest chain

3-ethyl-2,6-dimethylheptane

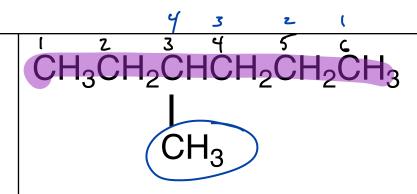
longest chain: 6

parent alkane name:

hexand

functional group (?) and position:

NO


substituent names:

methyl

substituent positions:

4

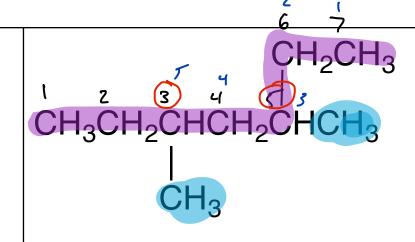
name:

longest chain: -

7

parent alkane name:

heptare


functional group (?) and position:

10

substituent names:

two methyl groups

substituent positions:

name:

3,5-dinethy/heptane

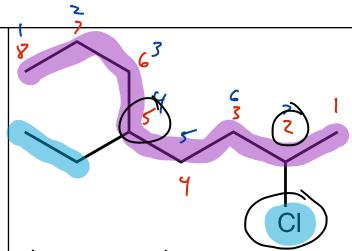
.

longest chain:

parent alkane name:

octane

functional group (?) and position:


no hologens are substituents

substituent names:

ethane y)

substituent positions:

halogen lop off "ine" ending name: replace with "o"

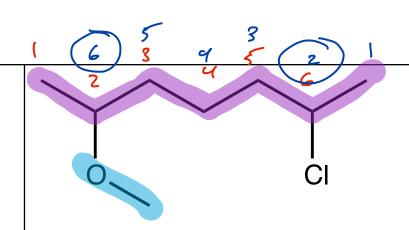
2-chloro-5-ethyl octane

longest chain: 7

heptane

functional group (?) and position:

not by nomenclature rule


substituent names:

chlorae -> chloro

methane -> methoxy

substituent positions:

2,6 or 2,6 I methoxy choro

name:

2-chloro-6-methoxyheptane

tre breaker is which
substituent come first
u the alpaket