(15) **Today**

Section 3.1 Functional Groups

Section 3.2 Alkanes and Isomers

Section 3.3 Alkyl Groups

Section 3.4 Nomenclature

(17) Second Class from Today

Chap 4 Cycloalkanes

Next Class (16)

Section 3.4 Nomenclature

Section 3.5 - 3.7 Properties and Conformations of Alkanes

Chap 4 Cycloalkanes

Third Class from Today (18) Chap 4 Cycloalkanes

Today's office hours postponed to tomorrow.

Tomorrow's office hours 11:15 to 12:45.

Section 3.1

Organophosphates

glucose- 6-phosphate

Functional Groups: Carbonyl Compounds

 R_2 $R_1 = CH_2$ $R_2 = CH_3$, $CH_2 CH_3$, $CH_2 CH_2 CH_3$ Rand X are used as "variables" R 15 used For C or H X is used for elements with lp e's Fr.C(Br,I,O,N,S Both groups will have very DC atoms Functional Groups: Carbonyl Compound with adjacent C's or H's

Functional Groups: Carbonyl Compounds with Adjacent Polar Groups

N bonded to 2 of Z=0 "peptide bond"

Section 3.1

Functional Groups: Aromatic Compounds

3 pairs of ets in a ring of I bonds benzene & substituted benzene sings

Section 3.1

Functional Groups

Section 3.1

Grouped to highlight which ones have similar reactivities

Nomenclature of Alkanes

Early names were based on the number of C atoms in the alkane, and the names came from a variety of places — and we're "stuck" with them for the first four

CH₃OH <u>methanol</u> the name is derived from a word coined by French chemists, Jean-Baptiste Dumas and Eugene Peligot, from "methy" (Greek for alcoholic liquid)" + hylē t c afar (Greek for "forest, wood, timber, material")²

CH₃CH₂OH "eth" to distinguish it from méthylène derived from French and German chemists "äthyl" in German³

CH₃CH₂CO₂H based on observation that it was the first (shortest chained) carboxylic acid that behaved like a fatty acid

pro (from protos for first) + pion (from pion for fat) => propionic acid⁴ 3 zerbus

 $CH_3CH_2CH_2CO_2H$ isolated from butter => butyric acid⁵

² https://en.wikipedia.org/wiki/Methanol#History

³ <u>https://chemistry.stackexchange.com/questions/142839/why-is-ethane-in-methane</u>, <u>https://gallica.bnf.fr/ark:/12148/bpt6k6569005x/f15.item</u>

⁴ https://en.wikipedia.org/wiki/Propionic_acid

⁵ https://en.wikipedia.org/wiki/Butyric_acid

Nomenclature of Alkanes: Original Scheme based names on number of C atoms present

 \mathbf{i}

methane	CH₄	\subset H_{Y}
ethane	C ₂ H ₆	
propane	C ₃ H ₈	
butane	C ₄ H ₁₀	
pentane	C ₅ H ₁₂	
hexane	C ₆ H ₁₄	
heptane	C7H16	
octane	C ₈ H ₁₈	
nonane	C ₉ H ₂₀	
decane	C ₁₀ H ₂₂	
undecane	C ₁₁ H ₂₄	
dodecane	C ₁₂ H ₂₆	

Nomenclature of Alkanes: Original Scheme based names on number of C atoms present

Sections 3.2 - 3.4

methane	CH₄	1 isomer
ethane	C_2H_6	1 isomer
propane	C_3H_8	1 isomer
butane	C_4H_{10}	2 isomers
pentane	C ₅ H ₁₂	3 isomers
hexane	C ₆ H ₁₄	5 isomers
heptane	C ₇ H ₁₆	
octane	C ₈ H ₁₈	
nonane	C ₉ H ₂₀	
decane	C ₁₀ H ₂₂	
undecane	C ₁₁ H ₂₄	
dodecane	C ₁₂ H ₂₆	

· bad chere

names will be based on the longest string cf is atoms