1. (5 pts. each) Identify the following functional groups.

2. (16 pts.) Identify the nucleophilic atoms and identify electrophilic carbon atoms.

3. (5 pts. each) Identify the following classes of biomolecules.

a. $H_2N - CH_2 - CO_2H$ b. $H_3C - (CH_2)_{15}CH_2 - CO_2H$

с. 0 ОН Н ОН ОН $\| \ | \ | \ | \ | \ |$ $C - C - C - C - C - C - CH_2OH$ $| \ | \ | \ | \ | \ | \ |$ H | \ H OH H H 4. (5 pts. each) Classify the following reactions as oxidation reduction, nucleophilic substitution, addition, elimination, isomerization

5. (12 pts.) Describe how a water molecule interacts with the following molecules. (List the intermolecular forces that are involved.)

6. (8 pts.) A buffer can be made by combining acetic acid and sodium acetate.

 CH_3CO_2H (aq) \longrightarrow $CH_3CO_2^-$ (aq) + H⁺ (aq)

Describe how an acetic acid buffer can consume excess protons.

Describe how an acetic acid–acetate buffer can release protons in response to the addition of a base.

7. (5 pts.) According to the 2nd Law of thermodynamics, $\Delta S_{universe}$ must be positive. Can a reaction have a negative ΔS ?

8. (5 pts.) A negative ΔH indicates what?

9. (8 pts.) A positive ΔG implies a large or a small K? Would this reaction favor the reactants or the products.

10. (8 pts.) The formation of ATF	from ADP and $P_{\rm i} is$ an	a endergonic process as the following
equation indicates.		

ADP + $P_i \longrightarrow ATP$ $\Delta G^{\circ \prime \prime} = 31 \text{ kJ/mol}$

Can the formation of ATP be driven by the hydrolysis of 1,3-bisphosphoglycerate?

1,3-bisphophoglycerate — 3-phosphoglycerate + P_i $\Delta G^{\circ^{\sim_1}} = -35.5 \text{ kJ/mol}$ Explain.