(8) **Today**

Sections 2.1 - 2.4 Polar Covalent Bonds, Formal Charges, Resonance/Electron Delocalization

Section 2.1: Problems 2-1 – 2-4 Section 2.2: Problems 2-5, 2-6, 2-28 – 2-30, 2-32, 2-53, 2-59, 2-63 Section 2.3: Problems 2-7, 2-8, 2-35, 2-36

(10) Second Class from Today

Sections 2.7 – 2.11 Acids and Bases

Next Class (9)

Sections 2.3 – 2.7 Formal Charges, Resonance/Electron Delocalization

Sections 2.4 – 2.6: Problem 2-9, 2-10, 2-20, 2-21, 2-23, 2-26, 2-37, 2-38, 2-56, 2-57, 2-61, Challenging Problems 2-33, 2-34, 2-39

Third Class from Today (11)

Sections 2.7 – 2.11 Acids and Bases

Section 2-12 Non-Covalent Interactions Between Molecules Polar Covalent Bonds and Electronegativity

"As a rough guide, bonds between atoms whose electronegativities differ by less than 0.5 are [considered] nonpolar covalent, bonds between atoms whose electronegativities differ by 0.5 to 2 are polar covalent, and bonds between atoms whose electronegativities differ by more than 2 are largely ionic."¹

¹ Organic Chemistry, 10th ed., McMurray, OpenStax (2023) https://openstax.org/details/books/organic-chemistry

Polar Covalent Bonds and Dipole Moments: HCl $\leftarrow 3.0$ [3.0-2.1] = 9Section 2.2 "The dipole moment, µ [...], is defined as the magnitude of the charge Q at either end of the [...] dipole times the distance r between the charges [...].^{"2} H-Cl is a polar indecale the @ and @ are on opposite sides of the molecule Larger energ differences... stronger dipoles Larger separation of charge stronger dipoles red blue 15 VIBCYOR Ð ROYGRIV

"The dipole moment, μ [...], is defined as the magnitude of the charge Q at either end of the [...] dipole times the distance r between the charges [...].^{"3}

Polar Covalent Bonds and Dipole Moments: CO₂

"The dipole moment, μ [...], is defined as the magnitude of the charge Q at either end of the [...] dipole times the distance r between the charges [...].⁴

a

Draw Lewis Structure

Draw VSEPR Structure

Draw Dipole arrows on polar bonds

If (+) and (-) are on opposite sides (front and back, left and right, top and bottom, upper left and lower right) then the molecule is polar otherwise it isn't.

see but actually н 8+ 8-Н

Draw Lewis Structure

Draw VSEPR Structure

Draw Dipole arrows on polar bonds

If (+) and (-) are on opposite sides (front and back, left and right, top and bottom, upper left and lower right) then the molecule is polar otherwise it isn't.

Draw Lewis Structure

Draw VSEPR Structure

Draw Dipole arrows on polar bonds

If (+) and (-) are on opposite sides (front and back, left and right, top and bottom, upper left and lower right) then the molecule is polar otherwise it isn't.

Formal Charges	et's on atom before bonding		e-'s or atom af	sned for	by bonding	Section 2.3
Formal Charge of an atom	= # valence e-'s in the neutral atom	-	(# of lone pair electrons	÷	1/2 of the e in the bon	e-'s ds)

 $\Theta = \frac{1}{2} \underbrace{\Theta}_{i} \underbrace{\Theta}_{i$

Formal Charge		# valence e-'s in		(# of lone pair		1/2 of the e-'s	
of an atom	=	the neutral atom	-		electrons	Ŧ	in the bonds)

 $CH_{3}OH$

FCH = 1-1 =0
$F2_{2} = 4 - (4)$
= 0
$F_{0} = 6 - 6 = 0$

Formal Charge		# valence e-'s in		1	# of lone pair		1/2 of the e-'s	
of an atom	=	the neutral atom	-		electrons	+	in the bonds)

