(5) **Today**

Next Class (6)

Section 1.4 Introduction to Chemical Bonding Theories octet rule etc Sections 1.12 Drawing Chemical Structures

Sections 1.5-1.10 Valence Bond Theory

Sections 1.12 Drawing Chemical Structures

(7) Second Class from Today

Sections 2.1 - 2.4 Polar Covalent Bonds, Formal Charges, Resonance/Electron Delocalization

Sections 2.4 – 2.6 Resonance/Electron Delocalization

Bring Modeling Kits to Class

Third Class from Today (8)

Sections 2.7 – 2.11 Acids and Bases hybrid orbitals are used to form σ bonds and to hold lone-pair electrons in the valence bond model, single bonds are always σ bonds double and triple bonds are formed from σ bonds plus π bonds

of σ bonds + pairs of lone-pair electrons = # of hybrid orbitals needed

or

number of directions electrons must be pointed in = # of hybrid orbitals needed

count out the # of atomic orbitals need to make the hybrid orbitals starting with the 2s orbital (or 3s if appropriate)

name the hybrid orbitals spⁿ where n is the number of p orbitals used

$$CH_3^+$$

Which one? Both C atoms are trigonal planar

Why is there free rotation around C to C single bonds but not C to C double bonds?

Which bond is stronger?

Explain observations and make predictions based on the hybridization of an atom

Which one? Both C atoms are trigonal planar

Why is there free rotation around C to C single bonds but not C to C double bonds?

Explain observations and make predictions based on the hybridization of an atom

Which bond is strongest? 370 kJ/mol², 355±8 kJ/mol³

426 kJ/mol¹

490 kJ/mol⁴

$$H_3C$$
— CH_2 — CH_3

$$H_2C = CH - CH_3$$

$$HC \longrightarrow CH_3$$

² Organic Chemistry, 10th ed. McMurry.

³ Chem. Rev. **66**, 465 (1966).

⁴ J.Chem.Ed. **42**, 502 (1965)

hybrid orbitals are used to form σ bonds and to hold lone-pair electrons in the valence bond model, single bonds are always σ bonds double and triple bonds are formed from σ bonds plus π bonds

of σ bonds + pairs of lone-pair electrons = # of hybrid orbitals needed

count out the # of atomic orbitals need to make the hybrid orbitals starting with the 2s orbital (or 3s if appropriate)

name the hybrid orbitals spⁿ where n is the number of p orbitals used

Practice

$$N \equiv C - CH_2 - NH_2$$

Chemists use different drawings to place emphasis on different aspects of a molecule.

Representations are used to solve typographical issues.

Molecular Formulas as Compared to Condensed Structures/Structural Formulas

Section 1.12

In organic, molecular formulas are written C_xH_y (and other elements listed alphabetically)

$$C_3H_8O$$

In organic, condensed structures typically start with a C, and everything immediately to the right of the C is connected to that first C. When the the first C is finally connected to the second C, now that atoms right of the second C are connected to second C. In acyclic unbranched molecules atoms to the right of the second C are not connected to the first C.

 C_3H_8O

CH₃CH₂OCH₃

CH₃CH₂CH₂OH

CH₃CHOHCH₃

In organic, condensed structures typically start with a C, and everything immediately to the right of the C is connected to that first C. When the the first C is finally connected to the second C, now that atoms right of the second C are connected to second C. In acyclic unbranched molecules atoms to the right of the second C are not connected to the first C.

CH₂CHCH₃

Because bonds are not drawn, condensed structures require the reader to bring some chemical knowledge to their interpretation.

$$CH_2CH_2CH_2$$

Condensed Structures/Structural Formulas: Using ()

Section 1.12

 $CH_3CH(OH)CH_2CH_3$ $CH_3(CH_2)_3CH_3$

CH₃CH₂CH(CH₃)₂

Parentheses () in structures are typically used to set off side chains, to indicate a repeating unit, or to indicate multiple groups of the same structure.

Often, chemists omit parentheses when they are not absolutely necessary,

$$\begin{array}{cccc} & \text{CH}_3\text{CHOHCH}_3 & \text{CH}_3\text{COCH}_2\text{CH}_3 \\ \text{CH}_3(\text{CH}_2)_3\text{CH}_3 & \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{CH}_3 \\ & \text{CH}_3\text{CH}(\text{OH})\text{CH}_3 & \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{CH}_3 \\ \end{array}$$

and sometimes chemists do things for aesthetic reasons.

$$C(CH_3)_3OH$$

Convert Condensed Structures to Kekulé Structures

Section 1.12

CH₃CHOHCH₂CH₃

 $CH_3C(O)CH(CH_3)_2$

CH₃CHO

When a bond ends and the atom isn't labeled it is assumed to be C.

When there aren't enough bonds drawn to a C atom, the "missing" bonds are C atom to H atom bonds.

All other atoms are labeled.

Heptane

2-heptanol

Different structures serve different purposes, but they represent the same things

CH₃CH(OH)CH₂CH(CH₃)CH₂CH₃