Section 1.4 Introduction to Chemical Bonding Theories octet rule etc

Sections 1.5-1.10 Valence Bond Theory

Sections 1.12 Drawing Chemical Structures

(7) **Second Class from Today Third Class from Today** (8)

Sections 2.1 - 2.4 Polar Covalent Bonds, Formal Charges, Resonance/Electron Delocalization

Sections 2.4 – 2.6 Resonance/Electron Delocalization

Bring Modeling Kits to Class

(5) **Today Next Class** (6)

Sections 1.12 Drawing Chemical Structures

Sections 2.7 – 2.11 Acids and Bases hybrid orbitals are used to form σ bonds and to hold lone-pair electrons

in the valence bond model, single bonds are always σ bonds

double and triple bonds are formed from σ bonds plus π bonds

of σ bonds + pairs of lone-pair electrons = # of hybrid orbitals needed

or

number of directions electrons must be pointed in $=$ # of hybrid orbitals needed

count out the # of atomic orbitals need to make the hybrid orbitals starting with the 2s orbital (or 3s if appropriate)

name the hybrid orbitals $spⁿ$ where n is the number of p orbitals used

https://www.westfield.ma.edu/cmasi/organic/hybrid/hybrid2.html Identify atoms that use hybrid orbitals to form bonds and hold lone-pair electrons

https://www.westfield.ma.edu/PersonalPages/cmasi/organic/hybrid/hybrid2.html

Identify atoms that use hybrid orbitals to form bonds and hold lone-pair electrons

 $CH₃⁺$

 $CH₃⁻$

 CH_3^{\bullet}

Determine the hybridization of unusual molecular fragments

Which one? Both C atoms are trigonal planar

> Why is there free rotation around C to C single bonds but not C to C double bonds?

Which bond is stronger?

$$
HC \equiv C \equiv CH_3
$$
\n
$$
P_3C \equiv CH_2 \equiv CH_3
$$
\n
$$
H_3C \equiv CH_2 \equiv CH_3
$$

Explain observations and make predictions based on the hybridization of an atom

Which one? Both C atoms are trigonal planar

Why is there free rotation around C to C single bonds but not C to C double bonds?

Explain observations and make predictions based on the hybridization of an atom

Which bond is strongest? 370 370 kJ/mol^{[2](#page-8-0)}, 355 ± 8 kJ/mol³ 426 426 kJ/mol¹ 490 kJ/mol⁴

^{[2](#page-8-3)} Organic Chemistry, 10th ed. McMurry.

^{[3](#page-8-4)} Chem. Rev. **66**, 465 (1966).

J.Chem.Ed. **42**, 502 (1965) [4](#page-8-5)

hybrid orbitals are used to form σ bonds and to hold lone-pair electrons

in the valence bond model, single bonds are always σ bonds

double and triple bonds are formed from σ bonds plus π bonds

of σ bonds + pairs of lone-pair electrons = # of hybrid orbitals needed

count out the # of atomic orbitals need to make the hybrid orbitals starting with the 2s orbital (or 3s if appropriate)

name the hybrid orbitals $spⁿ$ where n is the number of p orbitals used

Practice

Lewis & Kekulé Structures **Section 1.12** Section 1.12

$H : C : O$ H H C : C H H H H H

Chemists use different drawings to place emphasis on different aspects of a molecule.

Representations are used to solve typographical issues.

Molecular Formulas as Compared to Condensed Structures/Structural Formulas Section 1.12

In organic, molecular formulas are written C_xH_y (and other elements listed alphabetically)

 $\rm{C_3H_8O}$

Molecular Formulas as Compared to Condensed Structures/Structural **Formulas** Section 1.12

In organic, condensed structures typically start with a C, and everything immediately to the right of the C is connected to that first C. When the the first C is finally connected to the second C, now that atoms right of the second C are connected to second C. In acyclic unbranched molecules atoms to the right of the second C are not connected to the first C.

 C_3H_8O CH₃CH₂OCH₃ CH₃CH₂CH₂OH CH₃CHOHCH₃

In organic, condensed structures typically start with a C, and everything immediately to the right of the C is connected to that first C. When the the first C is finally connected to the second C, now that atoms right of the second C are connected to second C. In acyclic unbranched molecules atoms to the right of the second C are not connected to the first C.

 $CH₂CHCH₃$

Because bonds are not drawn, condensed structures require the reader to bring some chemical knowledge to their interpretation.

 $CH_2CH_2CH_2$

 $CH_3CH(OH)CH_2CH_3$ $CH_3(CH_2)_3CH_3$ $CH_3CH_2CH(CH_3)_2$

Parentheses **()** in structures are typically used to set off side chains, to indicate a repeating unit, or to indicate multiple groups of the same structure.

Condensed Structures/Structural Formulas **Section 1.12** Section 1.12

Often, chemists omit parentheses when they are not absolutely necessary,

 $CH_3CHOHCH_3$ CH₃COCH₂CH₃
CH₃CH(OH)CH₃ CH₃C(O)CH₂CH₃ $CH_3CH(OH)CH_3$

and sometimes chemists do things for aesthetic reasons.

 $C(CH₃)₃OH$ $CH₃C(CH₃)₂OH$ $(CH₃)₃COH$

 $CH_3CHOHCH_2CH_3$ $CH_3C(O)CH(CH_3)_2$ $CH_3CHOHCH_2CH_3$

When a bond ends and the atom isn't labeled it is assumed to be C.

When there aren't enough bonds drawn to a C atom, the "missing" bonds are C atom to H atom bonds.

All other atoms are labeled.

Heptane

2-heptanol

Different structures serve different purposes, but they represent the same things

Converting Between Structure Types **Sections 1.12** Sections 1.12

CH₃CH(OH)CH₂CH(CH₃)CH₂CH₃