Name	Test 2 (11/4)	1
CHEM 0201 (Organic I)	Fall 2024	
 Dichloromethane is larger and has a has a larger dipole moment than water higher boiling point than dichloromethane. (a. 4 pts.) List the intermolecu dichloromethane molecules use to interact with each other. (b. 4 pts.) List forces that water molecules use to interact with each other. (c. 4 pts.) Brie water has a higher boiling point than dichloromethane. 	r, yet water has a lar forces that the intermolecular fly explain why	2 3
		4
		5
		6
		7
		8
2. (12 pts.) Determine the degree of substitution (methyl, 1°, 2°, 3°, or 4°) for the	he circled C atoms.	9
CH_3 (CH_2) (CH_2)		0
CH ^C CH ₃	10	
		11
3. (16 pts.) Provide IUPAC names for the following molecules.		

4. (10 pts.) Identify/name the functional groups in the following structures.

5. (a. 6 pts.) Circle any groups or atoms experiencing gauche interactions on the Newman projection drawn below. Draw Newman projections showing the (b. 6 pts.) lowest and (c. 6 pts.) the highest energy conformations of the view of the molecule drawn below.

6. (8 pts.) Draw a Newman projection along the C_2 to C_3 bond of the conformation of 3-methyl-2-butanol drawn below.

7. The so-called C to C banana bonds in cyclopropane are much more reactive than C to C bonds in acyclic alkanes. (a. 3 pts.) Draw cyclopropane. (b. 3 pts.) Determine the hybridization of the C atoms in cyclopropane, and (c. 6 pts.) using valence bond theory briefly explain why these bonds are more reactive.

8. (10 pts.) Mark the following true of false.

In a disubstituted cyclohexane, a ring flip will change the cis/trans relationship between the substituents.

In a disubstituted cyclohexane, a ring flip will change the axial positions to equatorial positions and vice versa.

9. (8 pts.) Draw the lowest energy conformation of a *cis*-1,2-dimethylcyclohexane molecule.

- 10. Four pairs of substituted cyclohexane rings are drawn below.
- a. (8 pts.) If the two structures in a given pair can be interconverted by a so-called ring flip write "yes" under the pair; if not write "no". When examining the structures you should assume that the molecules themselves have not been rotated in space.
- b. (4 pts.)For each pair, circle the structure that would be lower in energy.

11. (12 pts.) Place a star (*) next to the chirality centers on the following molecules.

